Regulation of human argininosuccinate synthetase gene: induction by positive-acting nuclear mechanism in canavanine-resistant cell variants.

نویسندگان

  • F M Boyce
  • S O Freytag
چکیده

Nonhepatic human cell variants resistant to the arginine analog, canavanine, express argininosuccinate synthetase (AS) mRNA at levels 200-fold higher than parental cells without amplification of AS gene sequences. In this report we show that this regulation occurs in the nucleus prior to polyadenylation of AS precursor RNA and occurs through a positive-acting mechanism operating in canavanine-resistant cells. The half-life of cytoplasmic AS mRNA was estimated by blocking cellular transcription with actinomycin D. In both parental and canavanine-resistant variants of RPMI 2650 cells, the AS mRNA decayed with a half-life of 12-24 h, showing that cytoplasmic mRNA stabilization was not involved in this regulation. Quantification of AS RNA following cell fractionation showed that AS precursor RNA was present at greatly elevated amounts in the nuclei of canavanine-resistant cells. Similar results were obtained when nonpolyadenylated RNA was examined. Thus, the mechanism underlying high expression of AS mRNA in canavanine-resistant cells is an early nuclear event, and the processes of polyadenylation and transport of RNA to the cytoplasm are not involved. Intraspecific somatic cell hybrids were constructed to test whether the induction of AS mRNA was due to a gain of a function in canavanine-resistant cells or to a loss of a function in parental cells. Quantification of AS mRNA in hybrid cell lines showed that such cells contained high levels similar to those found in the canavanine-resistant parent. These findings show that the induction of AS mRNA is due to a positive-acting mechanism operating in the nucleus of canavanine-resistant cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Paradoxical regulation of human argininosuccinate synthetase cDNA minigene in opposition to endogenous gene: evidence for intragenic control sequences.

Human somatic cell variants resistant to the arginine analog, canavanine, express 200-fold increased levels of argininosuccinate synthetase (AS) mRNA as compared to parental cells. In this study we examined whether AS cDNA sequences contain cis-acting regulatory elements that are involved in the induction of AS mRNA in canavanine-resistant cells. Minigene constructs containing AS cDNA sequences...

متن کامل

Cloning of cDNA for argininosuccinate synthetase mRNA and study of enzyme overproduction in a human cell line.

Previous studies of the human cell line RPMI-2650 (wild type) and its canavanine-resistant variants have demonstrated differences in argininosuccinate synthetase activity as follows: canavanine-resistant much greater than wild type grown in citrulline greater than wild type grown in arginine (Su, T.-S., Beaudet, A. L., and O'Brien, W. E. (1981) Biochemistry 20, 2956-2960). A recombinant plasmid...

متن کامل

Co-application of canavanine and irradiation uncouples anticancer potential of arginine deprivation from citrulline availability

The moderate anticancer effect of arginine deprivation in clinical trials has been linked to an induced argininosuccinate synthetase (ASS1) expression in initially ASS1-negative tumors, and ASS1-positive cancers are anticipated as non-responders. Our previous studies indicated that arginine deprivation and low doses of the natural arginine analog canavanine can enhance radioresponse. However, t...

متن کامل

Hepatic synthesis of canavaninosuccinate from ureidohomoserine and aspartate, and its conversion to guanidinosuccinate.

This study continues the exploration of the mechanism for the formation of guanidinoacetate and guanidinosuccinate in the human [Clin. Chem. 21, 235 (1975)]. In this report we describe the formation of canavaninosuccinate from ureidohomoserine and aspartate by a human or bovine liver extract that had high argininosuccinate synthetase (EC 6.3.4.5) activity, and the subsequent formation of guanid...

متن کامل

The Relationship of Arginine Deprivation, Argininosuccinate Synthetase and Cell Death in Melanoma

It has been shown that melanoma cells do not express argininosuccinate synthetase (ASS) and therefore are unable to synthesize arginine from citrulline. Depleting arginine using pegylated arginine deiminase (ADI-PEG20) results in cell death in melanoma but not normal cells. This concept was translated into clinical trial and responses were seen. However, induction of ASS expression does occur w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Somatic cell and molecular genetics

دوره 15 2  شماره 

صفحات  -

تاریخ انتشار 1989